scholarly journals Enhancement of the momentum interpolation method on non-staggered grids

Author(s):  
J. Papageorgakopoulos ◽  
G. Arampatzis ◽  
D. Assimacopoulos ◽  
N. C. Markatos
Author(s):  
B. Song ◽  
R. S. Amano ◽  
S. Sitarama ◽  
B. Lin

Numerical study on a three-dimensional turbulent flow in a turbine-rotor passage is presented in this paper. The standard k-ε model was used for the first phase of the turbulence computations. The computations were further extended by employing the full Reynolds-stress closure model (RSM). The computational results obtained using these models were compared in order to investigate the turbulence effect in the near-wall region. The governing equations in a generalized curvilinear coordinate system are discretized by using the SIMPLEC method with non-staggered grids. The oscillations in pressure and velocity due to non-staggered grids are eliminated by using a special interpolation method. The predicted midspan pressure coefficients using the k-ε model and the RSM are compared with the experimental data. It was shown that the present results obtained by using either model are fairly reasonable. Computations were then extended to cover the entire blade-to-blade flow passage, and the three-dimensional effects on pressure and turbulence kinetic energy were evaluated. It was observed that the two turbulence models predict different results for the turbulence kinetic energy. This variation was identified as being related to some non-isotropic turbulence occurring near the blade surface due to the severe acceleration of the flow. It was thus proven that the models based on the RSM give more realistic predictions for highly turbulent cascade flow computations than a Boussinesq viscosity model.


2003 ◽  
Vol 43 (3) ◽  
pp. 267-287 ◽  
Author(s):  
Seok-Ki Choi ◽  
Seong-O Kim ◽  
Chang-Ho Lee ◽  
Hoon-Ki Choi

Author(s):  
R. S. Amano ◽  
B. Song ◽  
S. Sitarama ◽  
B. Lin

Numerical study on a three-dimensional turbulent flow in a turbine stator/rotor passage is presented in this paper. The standard k-ε model was used for the first phase of the turbulence computations. The computations were further extended by employing the full Reynolds-stress closure model (RSM). The computational results obtained using these models were compared in order to investigate the turbulence effect in the near-wall region. The governing equations in a generalized curvilinear coordinate system are discretized by using the SIMPLEC method with non-staggered grids. The oscillations in pressure and velocity due to non-staggered grids are eliminated by using a special interpolation method. The predicted midspan pressure coefficients using the k-ε model and the RSM are compared with the experimental data. It was shown that the present results obtained by using either model are fairly reasonable. Computations were then extended to cover the entire blade-to-blade flow passage, and the three-dimensional effects on pressure and turbulence kinetic energy were evaluated. It was observed that the two turbulence models predict different results for the turbulence kinetic energy. This variation was identified as being related to some non-isotropic turbulence occurring near the blade surface due to the severe acceleration of the flow. It was thus proven that the models based on the RSM give more realistic predictions for highly turbulent cascade flow computations than a Boussinesq viscosity model.


Sign in / Sign up

Export Citation Format

Share Document